META-GGAS IN TDDFT:
IMPORTANCE OF THE CURRENT-DENSITY CORRECTION
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Motivation Challenges: Meta-G(GAs in TDDFT

e Meta-GGAs ERGGA Vi, 1] = | emGGA (1 ¢) A3 can show (ultra)nonlocality Gauge Variance Continuity Equation
due to orbital dependence of

K )
7(r) = %Z [Vj(r)]”.
j

e 7(r,t) is gauge variant, but vy should be invariant since|e Using 7(r,?) in time-dependent equations leads to a viola-
exact Fxc is only a functional of n(r,t). tion of the continuity equation.

o Gauge transformation with A(r,t) of external potentials|e Considering the time-dependent (G)KS equations

e For ground-state calculations meta-GGAs can show similar properties as exact ex- legds to time- and position-dependent phase in all or- .0 3
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Current-Density Correction ) jp(r, 1)
o How do modern meta-GGAs (TASK and r?SCAN) perform in TDDFT? by Becke (2] and Tao [3] T(I‘, t) — T(I’, t) —m 2n(r t)
first applied by Bates, Furche [4] ’

e How to use modern meta-GGAs in TDDFT?

Results for Time Dependent Density Functional Theory
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e For CO and Liy the influence of 7 leads to a strong redshift from GKS to CGKS of the excitation 2 | TASKx-CGKS ——— _
lines. 0.3 o (C)GKS leads to higher energies compared to the linear-
0.25 | response KLI results of Ref. 5] with 1.80eV.
e This is observed for both TASKx and r?SCANx. 0.2} CT
0.15 : — TASKx leads to more accurate results than LDA but
o Propagating with SCANx leads to numerical instabilities. Oooé I still cannot Compete with the global hybrld PBEO in this
— For both functionals the current-density correction leads to a clearly better agreement with the 0 - ' TA A tespect.
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= Not including 7 can lead to significant deviations to experimental values!
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& e LDA shows significant deficiencies in describing the coupling: several 5%
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= spurlous excitations near coupled Qy line. 5 50
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® o wPBE shows the expected results. 10 -
AN A e 7 e TASKx shows 3 spurious lines. However, the positions are (mostly) 0
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e Small influence of the current-density correction 7.
*) estimated value for exact exchange KLI (EXX-KLI) calculation

Conclusion Interesting Technical Aspects
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e We found a systematic redshift from GKS to CGKS for all systems. . . o 0.3 | “rorr T oo
o Creating consistent meta-GGA PPs is highly 095 M def2-TZVPP ief2 T7VPP
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e The magnitude of the influence of 7 cannot be assessed a priori. demanding.
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e For NDI-1 and Bacteriochlorophyll molecules: Small influence of 7. e Many meta-GGAs depend on the iso-orbital
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e For CO and Liy: Strong influence of 7 and better agreement with experimental
results for CGKS.

Oscillator strength
Oscillator strength
=

=
Ut

o Meta-GGA functionals on top of (semi-)local

— Generally include 7 for meta-GGA calculations in TDGKS! PPs misinterpret 1so—orb1ta1 TEBIONS compared — o L\ Sy A
to all-electron calculations since the core den- : 9.1 24 26 28 3 32 3.4 36 3.8

e TASKx leads to improvements in the description of CT excitations compared sity ne(r) can have a large influence on a. Energy (eV) Energy (eV)
to LDA at semi-local computational cost but cannot compete with wPBE.

e Include core density via core correction|6}: Verify core correction by comparing our BTDFT (real-time, real-space)
results for CO and Lis to Turbomole|7] (all-electron) results using TASKx-
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